
## MMBTSC930

## **NPN Silicon Epitaxial Planar Transistor**

for FM RF amp, mixer, osc, converter and IF amplifier.

The transistor is subdivided into four groups, C, D, E and F, according to its DC current gain.

On special request, these transistors can be manufactured in different pin configurations.



1. Base 2. Emitter 3. Collector

SOT-23 Plastic Package

## Absolute Maximum Ratings (T<sub>a</sub> = 25 °C)

|                           | Symbol           | Value       | Unit |
|---------------------------|------------------|-------------|------|
| Collector Base Voltage    | $V_{CBO}$        | 30          | V    |
| Collector Emitter Voltage | $V_{CEO}$        | 20          | V    |
| Emitter Base Voltage      | V <sub>EBO</sub> | 5           | V    |
| Collector Current         | I <sub>C</sub>   | 30          | mA   |
| Power Dissipation         | P <sub>tot</sub> | 200         | mW   |
| Junction Temperature      | T <sub>j</sub>   | 125         | °C   |
| Storage Temperature Range | T <sub>Stg</sub> | -55 to +125 | °C   |











## MMBTSC930

Characteristics at T<sub>amb</sub>=25 °C

| haracteristics at T <sub>amb</sub> =25 °C                        |   | 1                |      | ı    | 1    | 1    |
|------------------------------------------------------------------|---|------------------|------|------|------|------|
|                                                                  |   | Symbol           | Min. | Тур. | Max. | Unit |
| DC Current Gain                                                  |   |                  |      |      |      |      |
| at $V_{CE}$ =6 $V$ , $I_{C}$ =1 $mA$                             |   |                  |      |      |      |      |
| Current Gain Group                                               | С | h <sub>FE</sub>  | 40   | -    | 80   | -    |
|                                                                  | D | h <sub>FE</sub>  | 60   | -    | 120  | -    |
|                                                                  | Ε | h <sub>FE</sub>  | 100  | -    | 200  | -    |
|                                                                  | F | h <sub>FE</sub>  | 160  | -    | 320  | -    |
| Collector Cutoff Current                                         |   |                  |      |      |      |      |
| at V <sub>CB</sub> =10V                                          |   | I <sub>CBO</sub> | -    | -    | 1    | μΑ   |
| Emitter Cutoff Current                                           |   |                  |      |      |      |      |
| at V <sub>EB</sub> =4V                                           |   | I <sub>EBO</sub> | -    | -    | 1    | μΑ   |
| Gain Bandwidth Product                                           |   |                  |      |      |      |      |
| at $V_{CE}$ =6 $V$ , $I_{C}$ =1 $mA$                             |   | f⊤               | 170  | 300  | -    | MHz  |
| Reverse Transfer Capacitance                                     |   |                  |      |      |      |      |
| at V <sub>CB</sub> =6V, f=1MHz                                   |   | Cre              | 1    | 1.3  | 1.8  | pF   |
| Base to Collector Time Constant                                  |   |                  |      |      |      |      |
| at $V_{CB}$ =6V, $I_{C}$ =1mA, f=31.9MHz                         |   | Rbb • Cc         | -    | 20   | 36   | ps   |
| Noise Figure                                                     |   |                  |      |      |      |      |
| at $V_{CB}$ =6V, $I_{C}$ =1mA, f=100MHz                          |   | NF               | -    | 4    | -    | dB   |
| Turn-on Time                                                     |   |                  |      |      |      |      |
| at $V_{\text{IN}}$ =+12V, $V_{\text{BE}}$ =-3V,appointed circuit |   | t <sub>on</sub>  | -    | 30   | -    | ns   |
| Turn-off Time                                                    |   |                  |      |      |      |      |
| at $V_{IN}$ =-12V, $V_{BE}$ =+3V, appointed circuit              |   | $t_{off}$        | -    | 30   | _    | ns   |







